幂等性和原子性
幂等性
HTTP/1.1中对幂等性的定义是:一次和多次请求某一个资源对于资源本身应该具有同样的结果(网络超时等问题除外)。也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同。
这里需要关注几个重点:
幂等性是系统服务对外一种承诺(而不是实现),承诺只要调用接口成功,外部多次调用对系统的影响是一致的。声明为幂等的服务会认为外部调用失败是常态,并且失败之后必然会有重试。
什么情况下需要幂等
业务开发中,经常会遇到重复提交的情况,无论是由于网络问题无法收到请求结果而重新发起请求,或是前端的操作抖动而造成重复提交情况。 在交易系统,支付系统这种重复提交造成的问题有尤其明显,比如: . 用户在APP上连续点击了多次提交订单,后台应该只产生一个订单; . 向支付宝发起支付请求,由于网络问题或系统BUG重发,支付宝应该只扣一次钱。 很显然,声明幂等的服务认为,外部调用者会存在多次调用的情况,为了防止外部多次调用对系统数据状态的发生多次改变,将服务设计成幂等。
幂等VS防重
上面例子中小明遇到的问题,只是重复提交的情况,和服务幂等的初衷是不同的。重复提交是在第一次请求已经成功的情况下,人为的进行多次操作,导致不满足幂等要求的服务多次改变状态。而幂等更多使用的情况是第一次请求不知道结果(比如超时)或者失败的异常情况下,发起多次请求,目的是多次确认第一次请求成功,却不会因多次请求而出现多次的状态变化。
什么情况下需要保证幂等性
以SQL为例,有下面三种场景,只有第三种场景需要开发人员使用其他策略保证幂等性: . SELECT col1 FROM tab1 WHER col2=2,无论执行多少次都不会改变状态,是天然的幂等。 . UPDATE tab1 SET col1=1 WHERE col2=2,无论执行成功多少次状态都是一致的,因此也是幂等操作。 . UPDATE tab1 SET col1=col1+1 WHERE col2=2,每次执行的结果都会发生变化,这种不是幂等的。
为什么要设计幂等性的服务
幂等可以使得客户端逻辑处理变得简单,但是却以服务逻辑变得复杂为代价。满足幂等服务的需要在逻辑中至少包含两点: . 首先去查询上一次的执行状态,如果没有则认为是第一次请求 . 在服务改变状态的业务逻辑前,保证防重复提交的逻辑
幂等的不足
幂等是为了简化客户端逻辑处理,却增加了服务提供者的逻辑和成本,是否有必要,需要根据具体场景具体分析,因此除了业务上的特殊要求外,尽量不提供幂等的接口。 . 增加了额外控制幂等的业务逻辑,复杂化了业务功能; . 把并行执行的功能改为串行执行,降低了执行效率。
保证幂等策略
幂等需要通过唯一的业务单号来保证。也就是说相同的业务单号,认为是同一笔业务。使用这个唯一的业务单号来确保,后面多次的相同的业务单号的处理逻辑和执行效果是一致的。 下面以支付为例,在不考虑并发的情况下,实现幂等很简单:①先查询一下订单是否已经支付过,②如果已经支付过,则返回支付成功;如果没有支付,进行支付流程,修改订单状态为‘已支付’。
防重复提交策略
上述的保证幂等方案是分成两步的,第②步依赖第①步的查询结果,无法保证原子性的。在高并发下就会出现下面的情况:第二次请求在第一次请求第②步订单状态还没有修改为‘已支付状态’的情况下到来。既然得出了这个结论,余下的问题也就变得简单:把查询和变更状态操作加锁,将并行操作改为串行操作。
乐观锁
如果只是更新已有的数据,没有必要对业务进行加锁,设计表结构时使用乐观锁,一般通过version来做乐观锁,这样既能保证执行效率,又能保证幂等。例如: UPDATE tab1 SET col1=1,version=version+1 WHERE version=#version# 不过,乐观锁存在失效的情况,就是常说的ABA问题,不过如果version版本一直是自增的就不会出现ABA的情况。(从网上找了一张图片很能说明乐观锁,引用过来,出自Mybatis对乐观锁的支持)
防重表
使用订单号orderNo做为去重表的唯一索引,每次请求都根据订单号向去重表中插入一条数据。第一次请求查询订单支付状态,当然订单没有支付,进行支付操作,无论成功与否,执行完后更新订单状态为成功或失败,删除去重表中的数据。后续的订单因为表中唯一索引而插入失败,则返回操作失败,直到第一次的请求完成(成功或失败)。可以看出防重表作用是加锁的功能。
分布式锁
这里使用的防重表可以使用分布式锁代替,比如Redis。订单发起支付请求,支付系统会去Redis缓存中查询是否存在该订单号的Key,如果不存在,则向Redis增加Key为订单号。查询订单支付已经支付,如果没有则进行支付,支付完成后删除该订单号的Key。通过Redis做到了分布式锁,只有这次订单订单支付请求完成,下次请求才能进来。相比去重表,将放并发做到了缓存中,较为高效。思路相同,同一时间只能完成一次支付请求。
token令牌
这种方式分成两个阶段:申请token阶段和支付阶段。 第一阶段,在进入到提交订单页面之前,需要订单系统根据用户信息向支付系统发起一次申请token的请求,支付系统将token保存到Redis缓存中,为第二阶段支付使用。 第二阶段,订单系统拿着申请到的token发起支付请求,支付系统会检查Redis中是否存在该token,如果存在,表示第一次发起支付请求,删除缓存中token后开始支付逻辑处理;如果缓存中不存在,表示非法请求。 实际上这里的token是一个信物,支付系统根据token确认,你是你妈的孩子。不足是需要系统间交互两次,流程较上述方法复杂。
支付缓冲区
把订单的支付请求都快速地接下来,一个快速接单的缓冲管道。后续使用异步任务处理管道中的数据,过滤掉重复的待支付订单。优点是同步转异步,高吞吐。不足是不能及时地返回支付结果,需要后续监听支付结果的异步返回。
==========================================
原子性
原子性是数据库的事务中的特性。在数据库事务的情景下,原子性指的是:一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。
对于Redis而言,命令的原子性指的是:一个操作的不可以再分,操作要么执行,要么不执行。
Redis操作原子性的原因 Redis的操作之所以是原子性的,是因为Redis是单线程的。
Redis在并发中的表现
Redis的API是原子性的操作,那么多个命令在并发中也是原子性的吗? 看看下面这段代码: $redis = new Redis(); $redis->connect('127.0.0.1', 6379); for($i = 0; $i < 1000; $i++) { $num = (int) $redis->get('val'); $num++; $redis->set('val', $num); usleep(10000); }
用两个终端执行上面的程序,发现val的结果是小于2000的值,那么可以知道,在程序中执行多个Redis命令并非是原子性的,这也和普通数据库的表现是一样的。 如果想在上面的程序中实现原子性,可以将get和set改成单命令操作,比如incr,或者使用Redis的事务,或者使用Redis+Lua的方式实现。
总结
综上所述,对Redis来说,执行get、set以及eval等API,都是一个一个的任务,这些任务都会由Redis的线程去负责执行,任务要么执行成功,要么执行失败,这就是Redis的命令是原子性的原因。 Redis本身提供的所有API都是原子操作,Redis中的事务其实是要保证批量操作的原子性。
最后更新于